BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

SEMESTER: 1 CLASS: BTECH/IMSC SESSION: MO/2022 BRANCH: BT/CHEMICAL/CIVIL/MECH/PIE/FT SUBJECT: CS101 PROGRAMMING FOR PROBLEM SOLVING **FULL MARKS: 25** 2 HOURS TIME: INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates. CO BL [2] 1 Q1 (a) What is the difference between a keyword and an identifier? Q1 (b) Explain the features of different types of storage classes of a variable. 02 (a) What is the role of an Operating System? [3] 2 Q2 (b) Given x=4, y=20 and z=5, evaluate the value of the following expressions: i. x*y/z+(x*z+y) 11. x + y * z - 4 ^ y / x Q3 (a) What is an ASCII code? Q3 (b) What will be the output of the following program? #include <stdio.h> int main() int a=20, b=5; ++ a; b= b-- + a; printf("%d, %d", a++, --b); return 0; Q4 (a) Given a= 10, b=5 and c=6, evaluate the following logical expression: [2] 2 d= ((a < b) & & (b > c)) | | (a > c) Q4 (b) Write a C program to input a number from the user in a loop till the user enters -1 and [3] 2 1 count how many numbers inputted are positive, negative and zero valued. Q5 (a) What are the different types of errors in C programming? [2] Q5 (b) Write a C program to generate the following pattern as an output:

::::: 16/01/2023 ::::::M

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH/BHMCT

BRANCH: BT/CHEMICAL/CIVIL/MECH/PIE/HMCT

SEMESTER: 1

SESSION: MO/2022

SUBJECT: BE101/ BER101 BIOLOGICAL SCIENCE FOR ENGINEERS

TIME:

2 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) Q.1(b)	Define the term life. Give a brief illustration on any two theories of origin of life	[2] [3]	1 1	BL 1 3
Q.2(a)	Enlist the name of any two vitamins, with their source and disease caused by deficiency of these vitamins.	[2]	1	1
Q.2(b)	Explain the steps of cell cycle.	[3]	1	2
Q.3(a)	State the first law of thermodynamics and give a suitable mathematical expression for it.	[2]	2	2
Q.3(b)	How will you differentiate between Plant and Animal cells? Explain with their contrasting features.	[3]	1	2
Q.4(a)	Name the storage polysaccharides in plants and in animals. Which hormone is responsible for conversion of stored polysaccharide to glucose?	[2]	1	1
Q.4(b)	Distinguish between aerobic and aerobic respiration with suitable examples.	[3]	2	2
Q.5	How glucose molecules are broken down into pyruvates? Give the metabolic steps involve in it.	[5]	1	3

::::: 20/01/2023 ::::::M

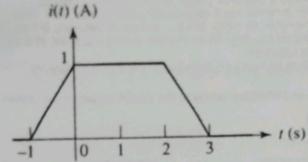
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH/IMSC

BRANCH: BT/CHEMICAL/CIVIL/MECH/PIE/PHYSICS

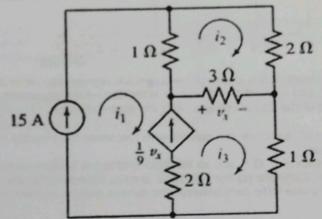
SEMESTER: 1 SESSION: MO/2022

SUBJECT: EE101 BASIC OF ELECTRICAL ENGINEERING

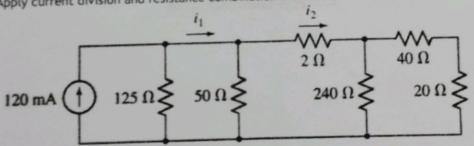

2 HOURS TIME:

FULL MARKS: 25

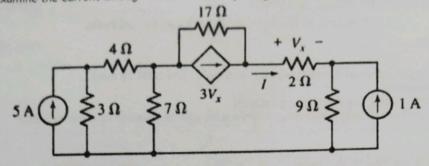
INSTRUCTIONS:


- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

CO BL CO1 BL3 Q.1(a) Determine and sketch the voltage in a 3 H inductor if the current waveform is as [2] below:


Q.1(b) Evaluate the mesh currents.

[3] CO1 BL3



Q.2(a) Apply current division and resistance combination methods to find i_1 and i_2 .

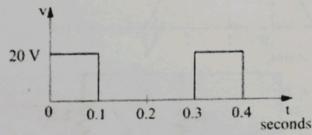
[2] CO1 BL3

Q.2(b) Examine the current through the 2Ω resistor by using source transformations. [3] CO1 BL4

Q.3(a) What is a magnetic circuit?

BL2 CO1 [2]

Give the analogy between a magnetic circuit and an electrical circuit.


BL2 CO1 [3]

A ring of ferromagnetic material has a rectangular cross-section. The inner Q.3(b) diameter is 7.4 in., the outer diameter is 9 in., and the thickness is 0.8 in. There is a coil of 600 turns wound on the ring. When the coil carries a current of 2.5A, the flux produced in the ring is 1.2xl0-3W. Express (i) Magnetic field intensity (ii) Reluctance and (iii) Permeability

Q.4(a) Compute the average and effective values of the square voltage wave shown.

[2] CO2 BL2

CO2 BL3

- Q.4(b) The instantaneous values of two alternating voltages are represented respectively by $v_1 = 60 \sin \theta$ volts and $v_2 = 40 \sin (\theta - \pi/3)$ volts. Derive an expression for the instantaneous value of the sum of voltages using the phasor diagram.
 - CO2 BL3

[3]

- Q.5(a) Sketch the variation of reactance and current with frequency for a purely inductive and capacitive circuit.
- A coil having a resistance of 12 Ω and an inductance of 0.1 H is connected across a CO2 BL3 [3] Q.5(b) 100 V, 50 Hz supply. Calculate (a) the reactance and the impedance of the coil; (b) the current; (c) the phase difference between the current and the applied voltage.

:::::: 18/01/2023 ::::::M

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH/IMSC.

BRANCH: BT/CHEMICAL/CIVIL/MECH/PROD/FT

SEMESTER: I

SESSION: MO/2022

SUBJECT: PH113 PHYSICS

TIME: 2 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates.

			-	DI
Q.1(a) Q.1(b)	Explain polarization of light. Develop the condition for maxima and minima due to interference in thin parallel film. (Oblique incidence)	[2] [3]	1	BL II
Q.2(a) Q.2(b)	Explain why Newton's rings are circular in nature. Formulate the expression for intensity distribution due to double slit Fraunhofer diffraction pattern.	[2] [3]	1	If VI
Q.3(a) Q.3(b)	Define Gauss's law. Develop the differential form of Gauss's law from its integral form. Formulate the relation between E and V in differential form. Show that electrostatic field is conservative in nature.	[2] [3]	2 2	I VI
Q.4(a) Q.4(b)	Explain equation of continuity. Define displacement current. Develop the boundary condition between B & H in magnetostatics across an interface separating two media having different permeabilities.	[2] [3]	2 2	V III
Q.5(a) Q.5(b)	Define postulates of special theory of relativity. Construct Lorentz transformation equations of space and time coordinates.	[2] [3]	3 3	I VI

::::: 17/01/2023 ::::::M

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS:

B.TECH / BHMCT/IMSC

BT/CHEMICAL/CIVIL/MECH/PIE/HMCT/IMSC_ALL

SEMESTER : IPM SESSION: SP/2023

BRANCH:

SUBJECT: CE101 ENVIRONMENTAL SCIENCE

5 marks and total 25 marks.

FULL MARKS: 25

THE:

02 Hours

HSTRUCTIONS: 1. The question paper contains	5	questions	each	of
1, 1110 questions				

Attempt all questions.
 The missing data, if any, may be assumed suitably.

4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Explain the concept of Ecosystem services using suitable examples for each service. Correlate the relationship between Biotic and Abiotic factors in a holistic manner	[2] [3]	1 1	BL 2 3
K	to the	[2]	2	3
Q.248 Q.2(b	burning of fossil fuel and the reactions for discuss a biogeochemical cycle, which does not	[3]	1	2
Q.3(a	a) Discuss sick building syndrome. Explain any two methods for gaseous air pollutants emission control.	[2] [3]	2 2	2 3
Q.4(Q.4(a) Explain the principle of electrostatic precipitator.	[2] [3]	2	3
Q.5.	(a) Classify water resources. What are the various requirements and uses of water? (b) Define water pollution. Discuss four different sources of water pollution?	[2] [3]	3	3 2

::::::26/05/2023::::::M

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS:

BTECH

BRANCH: BT/CHEMICAL/CIVIL/MECH/PIE

SEMESTER : II

SESSION: SP/2023

SUBJECT: CH101 CHEMISTRY

TIME:

02 Hours

FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) Q.1(b)	Discuss radius-ratio rule along with its limitations. Estimate the ionic radius of Cs*. The lattice energy of CsCl is 633 kJ/mol. For CsCl the Madelung constant, M, is 1.763, and the Born exponent, n, is 10.7. The ionic radius of Cl* is known to be 1.81 Å.	[2] [3]	CO 1 1	BL 2 3
Q.2(a)	Show by means of a diagram how the pattern of d orbital splitting changes as an octahedral complex undergoes tetragonal distortion and eventually becomes a square planar complex.	[2]	1	2
Q.2(b)	Why transition metal complexes have higher measured lattice energy as compared to the normal metals and explain the reason for the hump. (ii) If the CFSE of $[Co(H_2O)_6]^{2*}$ is -0.8 Δ_0 , what spin state is it in?	[2+1]	1	2
Q.3(a)	Apply selection rule (Laporte and Spin) for the electronic transition in	[2]	1	3
0.3(b)	$[Mn(H_2O)_6]^{2^+}$ and predict possible transitions. Show the formation of σ and π bonding and antibonding molecular orbitals due to overlap of 'p' orbitals with suitable diagram.	[3]	2	2
Q.4(a) Q.4(b)	Predict the hybridisation and shape of BF $_3$ molecule. Find out the bond order and magnetism of O_2^+ , $O_2^{2^-}$ and N_2^- .	[2] [3]	2 2	2 3
Q.5(a) Q.5(b)	Why in general boiling point of cis-isomers is higher compared to trans-isomers? Find out the R, S nomenclature of the following compounds. (i) Me Me	[2] [1.5+1.5]	2 2	2 3

-CI CI

:::::25/05/2023:::::M

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BTECH BRANCH: ALL SEMESTER : II SESSION : SP/2023

SUBJECT: MA 107: MATHEMATICS-II

TIME:

02 Hours

FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., If applicable, will be supplied to the candidates

Q.1(a) Find only the complementary function of the differential equation
$$3\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 4y = 0$$
CO BL
1 BL-
1 &2

Q.1(b) Find only the particular integral of the differential equation
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 2sinx + 3cosx$$
[3] BL-

Q.2 Solve the Cauchy Euler's linear differential equation-

$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = 24x^{2}$$
[5] BL - 1,2,3

Q.3 Find the power series solution of the differential equation
$$\frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 2y = 0$$
about an ordinary point $x = 0$ only.

Q.4(a) Find the values of m and n if
$$3x^2=mP_2(x) + nP_0(x)$$
 where $P_0(x)$ and $P_2(x)$ are [2] BL-
Legendre's polynomials. 2,3
Q.4(b) Show that $J_{1/2}(x)=\sqrt{\frac{2}{\pi x}}$ sinx [3]

Q.5 Find the Fourier series to represent the function defined as
$$f(x) = \begin{cases} \pi + x, & -\pi < x < 0 \\ 0, & 0 \le x < \pi \end{cases}$$
 [5] BL-1,2,3

:::::24/05/2023 M:::::